Section 5.6: Substitution and the Area Between Curves
Warm-Up Problems
(A) Integrate $\int \sqrt{2 x^{2}+4 x}(4 x+4) d x$
(B) Use an appropriate integral to find the shaded area under the curve $f(x)=4-x^{2}$.

Substitution with Definite Integrals

Recall: We use definite integrals to find the signed area between a curve and the x-axis. But we need to be careful when we evaluate definite integrals using substitution! Remember that the limits on the integral are in terms of x ! There are two methods to deal with this.

Method 1 for Definite Integrals with Substitution

Method 1: Transform the integral as though it is indefinite. Integrate, change back to x, and use the original x limits.

Calculate: $\int_{0}^{2} \sqrt{2 x^{2}+4 x}(4 x+4) d x$

Method 2 for Definite Integrals with Substitution

Method 2: Transform the integral AND the limits of integration. Then evaluate the transformed integral with the transformed limits.

Calculate: $\int_{0}^{2} \sqrt{2 x^{2}+4 x}(4 x+4) d x$

Why does this work?

Theorem 7: Substitution in Definite Integrals

If g^{\prime} is continuous on $[a, b]$ and f is continuous on the range of $g(x)=u$, then

$$
\int_{a}^{b} f(g(x)) \cdot g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u .
$$

Proof:

Another Example

Example 2: Find $\int_{-\pi}^{\pi} \frac{-1}{4} \tan \left(\frac{x}{4}\right) d x$ using both methods.
(Hint: remember that $\tan (x)=\frac{\sin (x)}{\cos (x)}$).
Method 1:
Method 2:

Hmm．．．．The area is 0 ？
Notice：because of the symmetry of the function $f(x)=$ $\tan (x)$ ，the area on the interval $[-\pi, 0]$ is the opposite of the area on the interval $[0, \pi]$ ，so over the interval $[-\pi, \pi]$ ，they sum to 0 ．

Watching out for tricks like this can save time when finding definite integrals！

Theorem 8：Definite Integrals on Symmetric Functions
Theorem 8：Let f be continuous on the symmetric interval $[-a, a]$ ．
（a）If f is even，then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$

（b）If f is odd，then $\int_{-a}^{a} f(x) d x=0$

（b）

Area Between Curves

Question: If this graph shows the functions $f(x)=2-\frac{1}{2} x^{2}$ and $g(x)=\frac{1}{2} x^{2}-2$, how could you find the total area of the shaded region between these two curves? Brainstorm with a partner.

Area Between Curves (continued)

If f and g are continuous with $f(x) \geq g(x)$ throughout $[a, b]$, then the area of the region between the curves $y=f(x)$ and $y=g(x)$ from a to b is the integral of $(f(x)-g(x))$ from a to b :

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Practice

Example 3: Find the area between the curves. Recall the functions are $f(x)=2 x+4$ and $g(x)=x^{2}-4$.

More practice

Example 4: Determine the definite integral(s) you would need to find the area of the regions bounded by $f(x)=x^{3}$ and $g(x)=\frac{x}{4}$. Note: you do not need to calculate the area! Just set up the integral(s).

Finding Area Between Curves with Respect to y
Question: How can we find the area between two curves given as functions of y ?

We can use the formula

$$
A=
$$

to find the area of a region bounded by curves described as functions of y. Note that f denotes the right-hand curve and g denotes the left-hand curve, since we want $f(y) \geq g(y)$.

Practice

Example 5: Determine the definite integral(s) you would need to find the area of the regions bounded by $x=2 y^{2}-2 y$ and $x=8 y^{2}-8 y^{3}$. Note: you do not need to calculate the area! Just set up the integral(s).

Extra Practice Problems

Try these by yourself or with a partner.

Extra Practice 1:

$\int_{1}^{e} \frac{\ln x}{x} d x$

Extra Practice Problems

Extra Practice 2:

$\int_{-4}^{4}\left(2 x^{7}-x^{3}+\sin x\right) d x$

Extra Practice Problems:

Extra Practice 3: Find the area of the shaded region.

Extra Practice Problems:

Extra Practice 4: Find the area of the shaded region.

