Recursion Theoretic Results for the Game of Cops and Robbers on Graphs

Shelley Stahl
University of Connecticut

N.E.R.D.S. November 2016

Games on graphs background

Throughout, $G=(V, E)$ is assumed to be a connected reflexive graph with no double-edges.

- In the game of Cops and Robbers, there are two players: a single robber, R, and a cop, C.
- The game is played in rounds, beginning with the cop C occupying a certain vertex, followed by the robber choosing a vertex to occupy.
- In each round, the cop moves first, followed by the robber. A move consists of a player moving to any vertex that is adjacent to their current vertex.
- The cop wins if after some finite number of moves, he occupies the same vertex as the robber. The robber wins if he can evade capture indefinitely.

Winning Strategies

A winning strategy for the cop is a set of rules that results in a win for the cop, regardless of the strategy the robber uses. If a winning strategy for a cop exists for a given graph G, we say G is cop-win.

Example:

In the following cop-win graph G, the cop has a winning strategy of moving to vertex e, and then moving to whatever vertex R chooses to occupy in the next round.

Winning Strategies

A graph that is not cop-win is defined to be robber-win. A winning strategy for the robber is a set of rules that allows the robber to evade capture indefinitely, regardless of the strategy the cop uses. If a winning strategy for the robber exists for a given graph G, it is robber-win.

Example:

In the following cop-win graph G, the robber has a winning strategy by starting at the vertex opposite C, and always moving to a vertex distance 2 from the cop.

Cop-Win Finite Graphs

The following classes of graphs are cop-win for every n :

- P_{n}, a path of length n.

- W_{n}, a wheel on n vertices (i.e., an n-cycle along with one universal vertex).

- All finite trees.

Cops and Robbers on Infinite Trees

Theorem ([2])

The following are equivalent:

- (1) T is a cop-win tree.
- (2) T is a tree with no infinite paths.

Note: this is provable over RCA_{0}, but we can form alternate characterizations of this theorem that are not.

(Highly) Locally Finite Trees

- We say a graph G is locally finite if every $v \in V$ is connected to only finitely many other nodes.
- $A C A_{0} \Leftrightarrow$ every locally finite infinite tree is robber win.
- There is a locally finite infinite tree for which every robber strategy computes $\mathbf{0}^{\prime}$
- A locally finite graph with $V=\left\{v_{i}: i \in \mathbb{N}\right\}$ is highly locally finite if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every n, if $E\left(v_{n}, v_{m}\right)$ holds, then $m \leq f(n)$.
- $\mathrm{WKL}_{0} \Leftrightarrow$ every highly locally finite infinite tree is robber win.
- Every computable highly locally finite infinite tree has a low robber-win strategy.

Characterization of Locally Finite Graphs

- Note that every locally finite infinite graph contains an infinite chordless path. Furthermore, $\mathbf{0}^{\prime}$ can compute such a path, since for every n the set of vertices distance n from the cop is computable from 0^{\prime}.
- Thus every locally finite infinite graph is robber-win, and this theorem is equivalent to ACA_{0}.
- If we restrict this theorem to highly locally finite infinite graphs, it is equivalent to $W_{K L}$.

Characterizing Cop-Win Graphs

In order to characterize Cop-Win Graphs of arbitrary size, we can use the following relation \preceq on the vertices of G. We define \preceq recursively on ordinals as follows:

- For all $v \in G, v \leq_{0} v$.
- For $\alpha \in \mathbb{O N}$, let $u \leq_{\alpha} v$ if and only if for every $x \in N[u]$ there exists $y \in N[v]$ such that $x \leq_{\beta} y$ for some $\beta<\alpha$.
- Since $\alpha \leq \beta$ implies $\leq_{\alpha} \subseteq \leq_{\beta}$ as relations, and because these relations are bounded above in cardinality, there exists an ordinal ρ such that $\leq_{\rho}=\leq_{\rho+1}$. We choose the least such ρ and define $\preceq=\leq_{\rho}$.

Characterizing Cop-Win Graphs

Theorem (Nowakowski, Winkler [3])

A graph G is cop-win if and only if the relation \preceq on G is trivial.

- \Rightarrow If \preceq is not trivial, then we have $u \npreceq v$ for some $u, v \in G$. Suppose the cop begins at v, and robber at u.
- The cop may choose to move to any neighbor v_{1} of v. But by the definition of $\preceq=\leq_{\rho}$, there exists $u_{1} \in N[u]$ such that for all $x \in N[v]$, we have $u_{1} \npreceq x$. Otherwise, we would have $u \leq_{\rho+1} v$, a contradiction.
- So the robber can move to u_{1} and evade the cop. We now have $R=u_{1} \npreceq v_{1}=C$, and so by induction the robber can always evade the cop for another round.

Characterizing Cop-Win Graphs

Theorem (Nowakowski, Winkler [3])

A graph G is cop-win if and only if the relation \preceq on G is trivial.

- \Leftarrow Suppose \preceq is trivial. Say $R=u_{0} \preceq v_{0}=C$, with $\preceq=\leq_{\rho}$. Then there must be some $v_{1} \in N\left[v_{0}\right]$ and $\rho_{1}<\rho$ such that $u_{0} \leq_{\rho_{1}} v_{1}$.
- Suppose after i rounds we have the the robber occupying u_{i} and the cop occupying v_{i} such that $u_{i} \leq_{\rho_{i}} v_{i}$. Once again the cop can move to some v_{i+1} such that $u_{i} \leq_{\rho_{i+1}} v_{i+1}$ for some $\rho_{i+1}<\rho_{i}$.
- This yields a decreasing sequence of ρ_{i} 's. Since the ordinals are well-ordered, this sequence cannot be infinite and so $\rho_{j}=0$ for some finite j. Then $u_{j}=v_{j}$ and the cop has won. \square

Characterizing Cop-Win Graphs

Theorem (Nowakowski, Winkler [3])
 A graph G is cop-win if and only if the relation \preceq on G is trivial.

- A memoryless strategy is a function $f: V \times V \rightarrow V$, i.e. a strategy which takes into account only the current position of the cop and robber. The \preceq relation implies the existence of a memoryless cop-win strategy for cop-win graphs.

Computability Results for Infinite Graphs

Question: If we require that cops and robbers play with computable strategies on computable graphs, does the characterization of cop-win (and robber-win) trees and graphs still hold?

Computability Results for Infinite trees

Theorem

There exists a computable graph that is classically robber-win, such that no computable robber strategy is a winning strategy.

Proof: We have seen the existence of a locally finite infinite tree such that each winning robber strategy computes $\mathbf{0}^{\prime}$.

Classically cop-win graphs with no computable cop-win strategy

Theorem

There exists a computable cop-win graph such that no computable memoryless cop-strategy is a winning strategy.

Proof: We construct such a graph G in stages to diagonalize against every possible computable strategy φ_{e}. Begin with G_{0} as follows:

Classically cop-win graphs with no computable cop-win strategy

If at a stage $s>e$ we see $\varphi_{e}\left(C_{e}, R_{e}\right) \downarrow=x_{e}$, we add in vertices a_{0} and b_{0} as follows:

Classically cop-win graphs with no computable cop-win strategy

If at a later stage $t>s>e$ we see $\varphi_{e}\left(x_{e}, a_{0}\right) \downarrow=b_{0}$ or R_{e}, we add in vertices a_{1} and b_{1} as follows:

We continue building the graph in this fashion, and let $G=\cup G_{e}$.

Why is this graph cop-win?

- If there are only finitely many a_{i} and b_{i} vertices for a given C_{e}, x_{e}, R_{e} path, then the cop can win by moving to the highest index b_{i}, since that vertex is adjacent to all other vertices.
- If there is an infinite path of a_{i} vertices and b_{i} vertices and the robber starts at some a_{i}, b_{i}, R_{e} or x_{e}, the cop can win by moving from C_{e} to b_{i+1}.

Why will no computable cop strategy be a winning one?

- If there are only finitely many a_{i} and b_{i} vertices for a given C_{e}, x_{e}, R_{e} path, then φ_{e} gave up on chasing down the robber.
- If there is an infinite path of a_{i} vertices and b_{i} vertices, we know the cop will make the wrong choice infinitely many times.

Can we find cop-win strategies that are arbitrarily complex?

- In the last example, no cop strategy was computable.
- Can we construct a cop-win graph such that every cop-win strategy computes $\mathbf{0}^{\prime}$?

Existence of winning cop strategies of relatively low complexity

Theorem
 Suppose G is a computable infinite cop-win graph, and A is a non-computable set. If $\left\{r_{i}: i \in \omega\right\}$ is a countable set of robber strategies, then there is a history cop-strategy c such that $c \not \not \not{ }_{T} A$, and c is a winning strategy against each r_{i}.

- An allowable play sequence for G is a finite sequence of vertices $\sigma=\left\langle c_{0}, r_{0}, c_{1}, r_{1}, \cdots, r_{n}\right\rangle$, beginning with an initial cop position and satisfying $c_{i+1} \in N\left[c_{i}\right]$ and $r_{i+1} \in N\left[r_{i}\right]$ for all $i<n$. Note that if G is computable, the set of allowable play sequences is computable.
- The proof of this relies on building a cop-win strategy $F=\cup F_{e}$ using forcing conditions F_{e}, finite functions from the set of allowable sequences to V, to satisfy:
- $R_{e}: \Phi_{e}^{F} \neq A$
- $P_{e}: F$ yields a cop strategy that beats r_{e}

Existence of winning cop strategies of relatively low complexity

- Assume F_{s-1} is a forcing condition. To satisfy R_{e}, define F_{s} as follows:
- If $\exists x \Phi_{e}^{F}(x) \uparrow$ for all cop strategies F extending F_{s-1}, set $F_{s}=F_{s-1}$.
- If there exists some x and some forcing condition F^{\prime} extending F_{s-1} such that $\Phi_{e}^{F^{\prime}}(x) \downarrow \neq A(x)$, set $F_{s}=F^{\prime}$
- Note that we must be in one of these two cases; otherwise, A is in fact computable.

Existence of winning cop strategies of relatively low complexity

- Assume F_{s-1} is a forcing condition. To satisfy P_{e}, first define a memoryless cop strategy $c_{\preceq}\left(v_{i}, v_{j}\right)=v_{k}$ for $v_{j} \leq_{\alpha} v_{i}$, where k is the least index for $v \in N\left[v_{i}\right]$ s.t. $v_{j} \leq_{\beta} v$ for some $\beta<\alpha$. Now start a game in which the robber follows r_{e}, and the cop follows F_{s-1} as long as possible.
- If F_{s-1} is defined enough to result in a win for the cop, define $F_{s}=F_{s-1}$.
- Otherwise, extend F_{s-1} to F_{s}, defined on an allowable play sequence in which the cop follows c_{\preceq} and the robber follows r_{e}.
- Note that F_{s} will still be finite, as c_{\preceq} will give the cop a strategy to win in finitely many moves.

Existence of winning cop strategies of relatively low complexity

- Now define $F=\cup F_{e}$. Then F yields a cop strategy c that wins against each r_{e}, and such that $c \not ¥_{T} A$. \square

Further Questions to study

- Can we find a global cop-win strategy (history or memoryless) that does not compute a given non-computable set A ?
- Do there exist infinite robber-win trees that require strategies above $\mathbf{0}^{\prime}$, or in general above $\mathbf{0}^{(\alpha)}$?
- How complex are the sets \leq_{α} in general?

Thank you!
 Slides available at wp.rachel-stahl.grad.uconn.edu

References

[1] Ash, C.J., Knight, J.F., Computable Structures and the Hyperarithmetical Hierarchy, Studies in Logic and the Foundations of Mathematics, Volume 144, 2000
[2] Bonato, A., Nowakowski, R. J., The Game of Cops and Robbers on Graphs, American Mathematical Society, Providence, R.I., 2010
[3] Nowakowski, R. J., Winkler, P., Vertex-to-vertex pursuit in a graph, Discrete Mathematics, Volume 42, Issues 2-3 (1983), p. 235-239
[4] Simpson, S. G., Subsystems of Second Order Arithmetic, Springer-Verlag, New York, 1998
[5] Soare, R.I. Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic, Springer-Verlag, New York, 1987.

